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Abstract
A new numerical simulation method using the finite element methodology (FEM) is presented to study

electromagnetic scattering due to an arbitrarily shaped material body doped randomly with thin and short
metallic wires.   The FEM approach described in many standard text books [1,2] is appropriately modified
to account for the presence of thin and short metallic wires distributed randomly inside an arbitrarily
shaped material body.   Using this modified FEM approach, the electromagnetic scattering due to cylindri-
cal, spherical material body doped randomly with thin metallic wires is studied.   

I. Introduction
Electromagnetic (EM) scattering properties such as mono-static/bistatic radar cross section of a

homogeneous material object can be controlled or modified by embedding metallic/non-metallic inclu-
sions in the object. These inclusions can be in the form of short metallic wires, small thin metallic plates, or
small metallic particles of various shapes [3]. The EM scattering properties can be controlled by selecting
proper size, shape of these inclusions. Recent advances in fabrication technology have allowed for the
inclusion of nano-scale metallic wires in these objects. However, current fabrication techniques used have
no control over the spacing and arrangement of these small sized wires in a binding medium. As a result,
these short wires are arranged in an arbitrary fashion. It is important and economically advantageous to
know the EM scattering properties of these objects populated randomly with these wires/particles prior to
its actual fabrication. In this work we describe a modified FEM approach to determine the EM scattering
properties of randomly dispersed thin and short metallic wires in an arbitrarily shaped material object. 

II. Numerical Modeling
In this section, first, we present a brief outline of the FEM approach to estimate the EM scattering from an
arbitrarily shaped material object without any metallic wires or other inclusions. Then, we explain the steps
to modify this simple FEM approach to account for presence of randomly populated thin and short metallic

wires in the object.   Figure 1 shows an arbitrary shaped material object of permittivity  and permeability

 populated randomly with small/nano size metallic wires. To estimate the EM scattering from the object

shown in Figure 1 without any metallic wires, the entire scattering volume is split into two regions by

enclosing the object by a fictitious surface  as shown in Figure 1. The electric field inside the surface

 satisfy the vector wave equation 

                                             (1)

Following the usual steps involved in the FEM formulation, the equation (1) can be reduced to [4]

          (2)

where  is a vector testing function and  is the unit outward normal to the surface . If you introduce

the surface current  as an additional unknown, then the right hand side of equation (2) can be simplified
to
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The equation (2) can then be written as

                (3)

 In equation (3), in addition to the unknown electric field, the surface current  is introduced as an extra
unknown and to generate additional equations, continuity of tangential electric field across the fictitious
surface boundary can be used. Hence, 

                             (4)

where  and  are the vector potential functions for the region outside the surface  and  is the 

incident field. To facilitate the solution of equations (3) and (4) the region inside the fictitious surface  is 

discretized into tetrahedron and the electric field over each tetrahedron can be expressed as                        

(5)

where  and  are, respectively, the unknown amplitude of electric field and the vector basis

function associated with the  edge of  tetrahedron. The surface currents  and  required for the

calculations of vector potentials can also be expressed in terms of vector basis functions  as

                                       ,                         (6)
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Figure1 Geometry of arbitrary shaped material object embedded randomly with
              thin and short metallic wires.
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Using the expressions (5), (6), and the Method of Moments (MoM), the equations (3) and (4) are converted
into set of simultaneous equations: 

                                              (7)

If  are the number of tetrahedron edges and  are the edges lying on the surface , then the coef-

ficient matrix is of the order .which can be solved for  and . From the

knowledge of the surface currents, the EM scattering properties of an arbitrarily shaped object are esti-
mated.   

The simulation technique presented so far estimates the EM scattering from a homogenous material
object. To estimate the EM scattering due to an arbitrarily shaped body populated randomly with short thin
wires we follow the procedure described below. Let us assume that when the object is embedded with thin

wires, a wire occupies one of the positions of edges out of total  edges. To populate randomly the

homogeneous object with  number of wires, we generate  random numbers between

. The edges corresponding to these random numbers are assumed to be occupied by thin metal-

lic wires. Consequently,  coefficients on these edges will be zero. The modified matrix equation for the

object randomly populated with thin metallic wires can be simply obtained by eliminating rows and col-
umns corresponding to those edges where metallic wires are assumed to be present. Hence the matrix
equation (6) when applied to the object loaded with thin metallic wires gets modified to

                                             (8)

 where the  and  are the matrices obtained from  and  by eliminating the rows and

columns corresponding to the edges where metallic wires are assumed to be present. 
III. Numerical Results and Discussion:

For a numerical experiment we consider a material sphere of radius  with permittivity

, permeability  illuminated by a plane EM wave. To estimate bistatic

radar cross section of the material sphere we assume that the sphere is illuminated by a plane wave with

incident angle , . To facilitate the bistatic RCS calculation the sphere is discretized

using the COSMOS/Geostar as is shown in Figure 2(a). Using the procedure described above the bistatic
RCS of the material sphere is calculated and presented in Figure 2(b). The number of tetrahedron used to

discretized the sphere were 123 resulting in  and . The numerical data presented

in Figure 2(b) are confirmed with the other published results.       A good agreement between the results
obtained using the present procedure and other published results confirms the validity of the present for-
mulation. 

Now to estimate the bistatic RCS for the material sphere doped with  number of very thin metallic

wires,    random numbers uniformly distributed between 1 and  are generated. If  is

the percentage of doping, then the number wires to be used for doping can be calculated from 
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. For the present example, with    and  choices the number of

wires used for doping were .   The edges, corresponding to these 12 random numbers (uni-

formly distributed between 1 and 238) are assumed to be thin metallic wires. The doped material sphere
with the randomly oriented wires is shown in Figure 3(a). Following the FEM procedure described above,
the bistatic RCS for the new structure   is estimated and is shown in Figures 3(b). Various numerical exam-
ples were simulated for varying concentrations of wires, their orientations and placing. These results will
be discussed at the time of presentation.

IV Conclusions
A new and modified finite element methodology (FEM) has been successfully developed to study

electromagnetic scattering from a arbitrarily shaped material object populated randomly with thin metallic
wires. Bistatic RCS of material objects in spherical, cylindrical, and cubical shapes randomly populated
with thin metallic wires have been studied. 
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Figure 2(a) Material sphere (k0a 1= )
discretized using tetrahedron elements
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Figure 2(b) Bistatic RCS of material sphere shown
                   in Figure 2(a)
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